- 1. Cavalieri's Principle leads to the volume formulas for prisms, cylinders, pyramids, cones, and spheres by giving you a way to analyze a solid as a stack of cross-sections.
- 2. oblique
- 3. Cavalieri's Principle
- 4. hemispheres
- **5.** 6
- 6. pentagon
- **7.** cylinder
- 8. No; Euler's Law, F + V = E + 2, is true for all convex polyhedrons. If F = V = E, then F + F = F + 2, or F = 2. No polyhedron exists with only 2 faces.
- **9.** 49,480.1 mm³
- **10.** 226.2 yd³
- 11. Given the dimensions of the prism in terms of x, y, and z, solve for the volume.

$$V = Bh$$

$$= \left(\frac{1}{2}Iw\right)h$$

$$= \frac{1}{2}\left(\left(\frac{1}{2}z\right)(3y)\right)(x)$$

$$= \frac{3}{4}xyz$$

- 12. The volumes are equivalent, $V = 2,646 \text{ cm}^3$.
- **13.** 112 in.³
- **14.** 5,654.9 m³
- 15. $\frac{2}{3}t^3$
- **16.** About 25.7 in.³

- **17.** About 7.2 in.³
- **18.** About 1.5 cm³
- **19.** 16*r*³cm³
- **20.** 4 capsules